Level 7

PROMPT sheet

7/1 Understand \& use proportionality

- To increase a quantity by 5%

Multiply the quantity by $1.05(100+5=105)$

- To decrease a quantity by 5%

Multiply the quantity by $0.95(100-5)=95$

7/2 Calculate using proportional change
To increase $£ 240$ by $15 \% ~(100+15=115)$
$=1.15 \times £ 240=£ 276$
To decrease $£ 240$ by $15 \%(100-15=85)$
$=0.85 \times £ 240=£ 204$

7/2 Multiply \& divide numbers 0-1

- Multiply e.g. 0.2×0.4

Ignore decimal points \& multiply numbers $2 \times 4=8$
Count the number of decimal places (2)
The answer will have this many (2)
$0.2 \times 0.4=0.08$ (2 decimal places)

- Divide e.g. $8 \div 0.2$

Multiply both by 10
$80 \div 2=40$ makes whole

7/2 4 rules of fractions

- Add \& subtract

Denominators must be the same

- Multiply

Multiply numerators; multiply denominators

- Divide

Invert fraction after \div
Multiply numerators; multiply denominators

7/4 Round to one significant figure

These all have ONE significant figure 4000
300
80
2
0.7
0.05
0.003

7/4 Estimate answers to calculations

- Round each number to 1 sf first
e.g. $\frac{423 \times 28}{568}=\frac{400 \times 30}{600}=\frac{12000}{600}=20$
e.g. $\frac{3.26 \times 11.8}{0.58}=\frac{3 \times 10}{0.6}=\frac{30}{0.6}=\frac{300}{6}=50$
e.g. $\frac{8.3 \times 35.6}{0.49}=\frac{8 \times 40}{0.5}=\frac{320}{0.5}=640$
($\div 0.5$ = doubling the number being divided)

7/6 Expand two brackets

Use FOIL	Use GRID
$\begin{aligned} & \text { F } \quad 0 \quad \text { I L L } \\ & =x^{2}+5 x-3 x-15 \\ & =x^{2}+2 x-15 \end{aligned}$	$\begin{aligned} & (x-3)(x+5) \\ & \begin{array}{\|c\|c\|c\|} & x & +5 \\ \hline x & x^{2} & +5 x \\ \hline-3 & -3 x & -15 \end{array} \end{aligned}$ $=x^{2}+2 x-15$

7/7 Solve simultaneous equations by an algebraic method

- Make the number of ys the same
- Add or subtract to eliminate the ys

Same signs
~ subtract
Different signs ~ add

- Find the value of x
- Substitute the value of x to find y
e.g.

$$
\begin{array}{ll}
2 x-3 y=11 & (x 2) \\
5 x+2 y=18 & (x 3)
\end{array}
$$

$$
4 x-6 y=22
$$

$$
15 x+6 y=54
$$

Add the two equations to eliminate y

$$
\begin{aligned}
& 19 x=76 \\
& x=4 \\
& \hline
\end{aligned}
$$

Substitute $x=4$ into one of the equations

$$
5 x+2 y=18
$$

$$
5 x 4+2 y=18
$$

$$
20+2 y=18
$$

$$
2 y=-2
$$

$$
y=-1
$$

7/7 Solve simultaneous equations graphically

- Draw the graphs of the equations
- Find where they cross

7/8 Solve inequalities in one variable
$a<b$ means a is less than b
$a \leq b$ means a is less than or equal to b
$a>b$ means a is greater than b
$a \geq b$ means a is greater than or equal to b
Inequalities can be treated like equations
The solution can be shown on a number line
e.g. $1 \quad 2 x-4<2$ (+4 to each side)
$2 x<6$ (-2 each side)
$\times<3$

$\begin{array}{llllll}-1 & 0 & 1 & 2 & 3 & 4\end{array}$
e.g. $22 x-7 \leq 5 x+2$ ($-2 x$ each side)
$-7 \leq 3 x+2$ (-2 each side)
$-9 \leq 3 x \quad(\div 3$ each side)
$-3 \leq x \quad$ (swap around)
$x \geq-3$ (swap inequality symbol)

$\begin{array}{lllllll}-3 & -2 & -1 & 0 & 1 & 2 & 3\end{array}$
e.g. $3 \quad-7 \leq 2 x-1<3$ (+1 to each part)
$-6 \leq 2 x<4$ ($\div 2$ each side)
$-3 \leq x<2$

7/9 Substitute numbers into expressions

Once numbers have replaced letters:

- Remember the order of operations BIDMAS
- Remember the rules for signs

$-x-=+$
$-x+=-$

7/9 Rearrange a formula

- Use the same balancing steps as when you solve equations
e.g. Make ' t ' the new subject in:

$$
\begin{aligned}
v & =u+a t \text { (-u from each side) } \\
v-u & =a t \text { (} \text { a each side) } \\
\frac{v-u}{a} & =\frac{-a t}{a} \\
t & =\frac{v-u}{a}
\end{aligned}
$$

7/10 Find the nth term of a quadratic sequence

If the $1^{\text {st }}$ difference is constant, it is linear

| e.g. | 3 | 7 | 11 | 15 | 19 | 23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |\ldots.

nth term $=4 n-1$
If the $2^{\text {nd }}$ difference is constant, it is quadratic
e.g. $3 \quad 6 \quad 11 \quad 18 \quad 27$...
$1^{\text {st }}$ difference $\longrightarrow+3 \quad+5 \quad+7 \quad+9$
$2^{\text {nd }}$ difference $\longrightarrow+2+2+2$
nth term $=1 n^{2}+/-a$
$n^{2} \rightarrow \quad 1 \quad 4 \quad 9 \quad 16 \quad 25$
nth term $=1 n^{2}+2$

7/11Plot quadratic \& cubic functions

- The graph of a quadratic equation will have a basic shape like this
 or

- The graph of a cubic equation will will have a basic shape like this

or

7/12 Pythagoras Theorem

For this right angled triangle:

- If finding the hypotenuse

ADD the squares of the other 2 sides Then square root

- If finding a shorter side

SUBT the squares of the other 2 sides Then square root

7/13 Find lengths, areas \& volumes

Formulae to learn:

Area of rectangle $=1 \times w$

Area of triangle $=\frac{b \times h}{2}$

Area of parallelogram $=b \times h$

Area of trapezium $=\frac{1}{2}(a+b) \times h$

b
Area of circle $=\pi \times r^{2}$

Circumference $=\pi \times \mathrm{d}$

Volume $=$ Area of cross-section \times length

7/14 Enlarge a shape by a fractional sf

- Start at the centre of enlargement
- Measure distance to a vertex of the shape
- Multiply that distance by the scale factor
- This is the distance of the new point e.g. To enlarge triangle $A B C$ by $s f=\frac{1}{2}$

7/15 Locus of point

The path or region a point covers as it moves according to a rule

- Fixed distance from a point - circle

- Equal distance from two points perpendicular bisector

- Equal distance from two intersecting lines angle bisector

- Perpendicular from a point to a line
 x

7/16 Bounds of measurement

- If 23 cm is rounded to nearest whole cm
- 23 is between the whole numbers 22 and 24

7/17 Compound Measures

- These triangles are useful
- Cover the quantity you are trying to find

D~Distance
S~Speed
T~Time

M~Mass
D~Density
V~Volume

Examples

Speed $=\frac{\text { Distance }}{\text { Time }}$

$$
\text { Time }=\frac{\text { Distance }}{\text { Speed }}
$$

$$
\text { Distance }=\text { Speed } \times \text { Time }
$$

7/18 Plan a Statistical Enquiry

- Questions should be simple
- The answers need to be 'yes or 'no' or a 'number' or from a choice of answers
- Tick boxes are useful
- Avoid leading questions
- Avoid open-ended questions
- Avoid biased questions
- Ensure the sample is large enough
- Ensure the sample will give valid results

7/19 Graphical representation

- Scatter diagrams - used to investigate correlation
e.g. Positive Correlation

If it shows correlation, draw a line of best fit on it Points which do not fit the trend are called OUTLIERS and should be ignored
The line can be used to predict data

- Frequency polygon - used to compare two sets of data

Frequency polygon
Plot frequencies at the midpoint of each class interval
Join successive points with a straight line

7/20 Estimate mean

Time $(t \mathbf{s e c})$	x	f	$f x$
$60<t \leq 70$	65	12	780
$70<t \leq 80$	75	22	1650
$80<t \leq 90$	85	23	1955
$90<t \leq 100$	95	24	2280
$100<t \leq 110$	105	19	1995
$\Sigma f=100 \Sigma f x=8660$			

$$
\text { Mean }=\frac{\sum f x}{\Sigma f}=\frac{8660}{100}=\underline{86.6 \mathrm{sec}}
$$

Modal class $=90<t \leq 100$
(because this class interval has the largest frequency i.e. 24)
Median $=\frac{1}{2}(100+1)^{\text {th }}=50.5^{\text {th }}$

$$
=80<t \leq 90
$$

- Compare an average using mean, median or mode.
- Compare spread using the range (the higher the range, the bigger the spread of data)
- Frequency polygons and stem \& leaf diagrams are often used to compare 2 distributions on the same diagram

7/22 Understand relative frequency

This is the name given to an estimate of probability from an experiment or a survey

Relative probability $=$ No. times an outcome occurs
Total number of trials

7/23 Examine results of an enquiry

 Justify choice of presentationA scatter diagram would be used to find out if there is any correlation or relationship between two sets of data A frequency polygon would be used to compare two sets of data

